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Numerical inversion of a characteristic function

By R. B. DAVIES
DSIR, Wellington, New Zealand

SuMMARY

A method is described for finding a bound on the error when a version of the usual
characteristic function inversion formula is evaluated by numerical integration. The method
is applied to the calculation of the distribution function of a quadratic form in normal
random variables.

Some key words : Numerical inversion of characteristic fﬁhction; Quadi-a.tic form in normal variables;
Trapezoidal rule.

1. INTRODUCTION

Suppose that a real random variable, X, has a readily calculable characteristic function
$(u) = E(eX), (1)

and that we wish to compute the probability pr (X < ). i

In this note a method is presented for finding a bound on the integration error when Gil-
Pelaez’s (1951) inversion formula is evaluated by numerical integration using the trapezoidal
rule. This method is very similar to those suggested by Bohmann (1961, 1970, 1972) but is
more suitable for problems such as the one considered in § 4.

2. CONTINUOUS CASE
In this section we will suppose that, for some ¢ and § > 0 and forall u > 1,

|p(w)| < cu—? (2)

and that E(|X|) < co. It follows (Gil-Pelaez, 1951) that

pr(X <) = %—J‘:D Im (?%x) du (3)
and hence that
pr(X<a:—t)—pr(X>x+t)=—2f°o Im(ﬂ%)ﬂ%—w?)cos(ut)du. 4)

Equations (3) and (4) may be rewritten as
A
priX <a)—-% =f S(u) du,
o
A
pr(X < z—2anf/A)—pr(X > x+2mn[A) = 2f S(u) cos (2mnulA) du,
0 ‘
where '

(8)

S(u) = — §‘, Im{

= — 00

¢(u + kA) e—tu+kA) z
2m(u+kA)
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and n is a positive integer. Applying the Fourier cosine series summation formula, we obtain

pr(X < x)+ 2 {pr (X <x— 27m/A) -pr (X > w+27m/A)}cos (27mu/A)

_ ¢(u + }‘;A) e—"—(u+kA)z
- Ak_gm Im { 2m(u+ kA) } (6)

Useful formulae are obtained by setting » equal to either .0 or $A. Substituting # = A, one
obtains

pr(X < z)+ E (= 1)*{pr (X < z—2mn[A)-pr(X > z+2mnfA)}
e e VT ,

E Im [¢{(k+3) A} 6“"‘**’“]/&(4*6 +3)). ()

Thus to compute pr (X < %), one chooses A so that
max{pr (X < x— 21r/A), pr(X > 2 +2afA)} (8)

is less than, say, half the maximum allowable error and then computes
b— 3 Im(${(+) A} e e+ 1), (9)

where K is chosen so that the truncation error is also less than half the maximum allowable
eITor.

There are many ways of finding bounds on (8). For example, suppose that the moment
generating function, E{exp (uX)}, exists in a neighbourhood (U, ;) of the origin and yr(w)
denotes its logarithm. Then by Feller (1966, p. 525), or by considering the expectation of
I, . —exp {u(X — )} and letting » = ¥’'(«), we have

priX > YW} < exp YW -wp' W} (G >u>0),

with a similar expression for the lower tail, I denoting an indicator function.

- 3. DISCRETE CASE : :
Suppose that X can take on only integer values and E(| X|) < co. If ¢(u) = E(e®*X)and zis

an integer, then
_‘ - n ¢(u) e—tuz
pr(X <z)=1} f_”Re{g——————ﬂ(l_e_w) du

and the method proceeds as in the continuous case.

‘4. DISTRIBUTION OF A QUADRATIC FORM IN INDEPENDENT NORMAL RANDOM VARIABLES

A quadratie form in independent normal random variables may be expressed as the linear
combination

Q= S AX+0X, (10)

where X, has a chi-squared distribution with n, degrees of freedom and noncentrality
parameter 8%2(i = 1,...,7), X, has a standard normal distribution and all the X, are
mdependent See John.son & Kotz (1970, Ch. 29) for a discussion of other methods for
finding the distribution of Q and for apphca,tlons ‘The numemcal integration method has
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been suggested by Imhoff (1961) but he did not give a method for selecting the sampling
interval. The characteristic function

exp {m Y A;07 / (1 —2¢ud;) — %u20'2}

E(eiuQ)
T (1—2iud,)iv
i=1
Table 1. Number of terms to give accuracy of 0-00005 in numerical
integration of chi-squared distribution

Degrees pr{x} < =)

of freedom g A N
n 0-001 0-5 0-999

1 > 20,000 7,238 917

2 16,670 685 281

3 1,044 209 120

4 224 92 72

5 101 53 51

6 51 51 31

10 19 16 13

100 8 6 7

1,000 7 5 7

may be readily calculated and so the method of § 2 may be followed. The calculation of the
truncation point, K, although elementary, involves checking a number of different bounds
and will not be discussed here. It is possible, in principle, for the terms of (9) to become large
with fluctuating sign leading to a large roundoff error and this should be checked when (9)
is evaluated. However, this possibility has not been found to be a problem in the numerous
quadratic forms on which this method has been tried.

A computer program based on the ideas described here for calculating the distribution of
(10) has been written in ALGOL and some idea of its practicality may be gained by using it to
compute the distribution of a central chi-squared random variable for various numbers of
degrees of freedom, n. The number of terms in the sum (9) used to give an accuracy of
0-00005 for various values of z, chosen so that pr(y2 < ) = 0-001,0-5,0-999, and » are
given in Table 1. Nonzero values of §; and o help and in general the method, in the simple
form described here, is reasonable for about 4 decimal figures of accuracy if the sum (10) is
not dominated by 1, 2 or 3 terms each with one degree of freedom, or by one term with three
degrees of freedom, etc. It is also not an unreasonable way for calculating noncentral
chi-squared and F probabilities.
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